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Abstract 

The displacive ferroelectric Bi4Ti3Ol2 [Mr = 1171.6, a 
=5-450(1) ,  b=5 .4059(6 ) ,  c =  32-832 (3) ~ ,  r =  
90"00 ° , Z = 4 ,  D x = 8 " 0 4 5 g c m  -3, M o K a ,  A = 
0-7107 ,A,, /z = 747.3 c m - i ,  F(000) = 1976] is 
described at room temperature as a commensurate 
modulation of an Fmmm parent structure derived 
from an idealized 14/mmm structure. Displacive 
modes of inherent F2mm, Bmab and Bbab symmetry 
are all substantial and reduce the space-group sym- 
metry to B2ab. A further substantial displacive mode 
of Bbam symmetry reduces the space-group symme- 
try to Blal  and induces minor displacive modes of 
Fmm2, F12/ml and Bream symmetry. A group- 
theoretical analysis of the problem details how the 
X-ray data can be classified so as to monitor the 
refinement. To a first-order approximation, the 
F2mm and Bbab symmetry components of atom 
displacements contribute only to the imaginary part 
of the structure factors. Because the structure factors 
have a predominant real component,  it is easy to get 
the F2mm and Bbab displacive components of the O 
atoms wrong. False minima occur at values of 0.027 
for R~ = Y.hllFobs(h)l- IFcalc(h)ll/ZhlFobs(h)l but a 
corrrect solution was obtained with RI = 0.0177 for 
2839 unmerged data with l(h) > 2o-[I(h)]. Criteria for 
a correct solution are evaluated and subsequently 
met. The final refinement used a 0.63:0-37 twin 
model. 

Introduction 

Within the family of so called Aurivillius phases 
(Aurivillius, 1949, 1950), there exists a large number 
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of displacive ferroelectrics (Subbarao, 1973; Singh, 
Bopardikar & Atkare, 1988). These displacive ferro- 
electrics have room-temperature structures which can 
be described in terms of small displacive pertur- 
bations away from an 14/mmm, a "= b '= 3.85/~, 
prototype parent structure that consists of 
perovskite-like A,,_IB,03,+ 1 slabs regularly inter- 
leaved with Bi202 layers (see Fig. 1 for n = 3). The 
parent structure is presumed to correspond to the 
crystal structure above the high-temperature phase 
transition which occurs at the so called Curie tem- 
perature. However, in several instances additional 
phase transitions are known to occur at different 
temperatures (Subbarao, 1973; Newnham, Wolfe & 
Dorrian, 1971). This poses questions as to the nature 
of these changes. 
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Fig. 1. A perspective drawing, approximately down (110), of the 

undistorted Fmmm parent structure of Bi4Ti30~2. Only atoms 
between ~e and 4ae are shown. 
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Careful analysis of the diffraction patterns of a 
wide range of Aurivillius phases has revealed certain 
consistencies. From our work (Table 5), Bi2BaNbzO9 
appears to be the 14/mmm parent structure while 
Bi2SrNb2Og, Bi2SrTa2Og, Bi2BaTa209 appear to have 
space group A21am. Bi3(Ti,Nb)O9 (Wolfe, 
Newnham, Smith & Kay, 1971) and (Sr,Ba)BiTa209 
(Newnham, Wolfe, Horsey, Diaz-Colon & Kay, 
1973) also appear to have space group A2~am. How- 
ever, Bi2WO6 (Wolfe, Newnham & Kay, 1969) and 
BiaTi3Oi2 (Dorrian, Newnham, Smith & Kay, 1971) 
are reported to have space group B2cb. The a and b 
axes of the A- and B-centred lattices correspond to 
the diagonals a'___ b' of the parent structure. The 
choice between A or B centring is made so that the 
polar direction corresponds to a. One is tempted to 
conclude that when n is even the dominant displacive 
modes result in A21am whereas when n is odd the 
dominant displacive modes result in B2cb. When no 
displacement occurs the structure remains as 
14/mmm. 

It should be noted that the space group with 
symmetry elements common to A21am and B2cb is 

• 1..~_ I P21ab. Two symmetry elements (21 axis ~ x, - y ,  
- z  and b glide x, r +  Y, ~_ z) describe symmetry 
across the Bi202 layers at z = _ ~ while the a glide 
+ x, ~ - y, z relates atoms of the same z coordinate. 
The centring imposes relationships across the middle 

• • I q _  _ of the perovsklte slab (21 axis ~ x, ~ y, - z  and 
mirror x, y, - z )  for the A-centred (n even) case and 
(2 axis x, - y ,  - z  and n glide ½ + x, ~ + y ,  - z )  for 
the B-centred (n odd) case. 

Symmetry labels only contain sufficient informa- 
tion to generate all the equivalent positions. For 
example, because of the B centring, B2cb has 2: x, 
- y ,  - z  and 21: ~ + x, - y ,  ~ -  z parallel to a; c: x, 

I - y, ~ + z and a: ~ + x, ~ - Y'I z perpendicular to b; b: 
x, 2 + y ,  ~ -  z and n: ~ + x, ~ + y ,  - z  perpendicular 
to c. We have chosen labelling that emphasizes an a 
glide perpendicular to b as this is the symmetry 
element of P21ab that is most relevant to atoms 
within a perovskite slab and we will henceforth refer 
to B2ab rather than B2cb. 

However, Bi4Ti3012 is actually monoclinic as sug- 
gested by optical measurements (Dorrian et al., 
1971). Our electron diffraction experiments show 
that the true space group is Blal  and not B2ab as 
the b-glide absences (h = 2n, k = 2n + 1, I = 0) are 
weakly observed (Withers, Thompson, Wallenberg, 
FitzGerald, Anderson & Hyde, 1988). One concludes 
that there are a number of simultaneously existing 
modulation waves of different irreducible representa- 
tions. It was decided to carefully collect and refine 
data for Bi4Ti3On2 to check the validity of a previous 
analysis which imposed B2ab symmetry (Dorrian et 
al., 1971)• We found that many features of this 
structure are incorrect and this casts serious doubts 

on the reported structure of Bi3(Ti,Nb)O9 (Wolfe et 
al., 1971), which we will investigate in another paper. 

Blal  can be transformed to Plcl  using new axes 
(a + c)/2, b, c and the origin relocated to put the 
glide at y = 0. However, these modifications only 
hinder the understanding of the structure. Since Blal  
and B2ab are subgroups of Fmmm with the same a, 
b, c axes we consider it preferable to use the origin 
and axis choice which leaves equivalent positions 
unchanged. 

Group-theoretical considerations 

Modulated structures may be described in terms of 
occupancy and displacive waves associated with 
points of a Brillouin zone in reciprocal space. These 
waves describe changes in atomic parameters and 
linear combinations of atomic parameters away from 
those implied by the higher symmetry of a parent 
structure. The parent structure should be regarded as 
an idealized structure and it is not necessary that the 
parent structure should exist under some physical 
conditions in order that an actual structure be 
regarded as modulated. Nevertheless Bi4Ti3012 does 
exist as a tetragonal structure above 948 K 
(Newnham et al., 1971). Distortions of the crystal 
lattice can be an independent aspect of the descrip- 
tion if we regard symmetry operations as acting on 
scattering density described using fractional coordi- 
nates. Loss of symmetry allows the lattice distortion. 

We can describe single-atom parameters of the 
modulated structure using the parent structure for 
reference. The rth single-atom variable parameter 
associated with the qth equivalent position of the nth 
atom in the reference asymmetric unit of the parent 
structure may be described as 

Vnq r = ]2nqro [ A Vnq r 

where Avnq r is the change of the parameter away 
from the value V,,qro which would hold if the symme- 
try of the parent structure were maintained. 

Symmetrized parameters Snpr can substitute for the 
single-atom parameters where ASnp r = Z q m p q A l l n q  r S O  

that AVnq,  r = ZpOq,pASnpr ,  where ZpBq,pmpq = •q,q and 
(~q,q a r e  elements of the indentity matrix. 

Parameter changes ASnpr and Av.qr span exactly the 
same variable space, and structure refinement can be 
considered equally well in either parameter system 
since 

OF(hkl)/OSnpr = ZqBqpOF(hkl)/OVnqr. 

Group theory (Bradley & Cracknell, 1972) may be 
used to select sensible coefficients Apq  f r o m  the 
irreducible representations Ct~(Rq)q of the space 
group. These coefficients can be chosen as particular 
matrix elements (p corresponding to particular 
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choices of/x, i, j) of irreducible representations so as 
to be independent of r and n. This requires that the 
parameters for any particular asymmetric unit of the 
parent group be defined relative to an axial system 
related to a reference axial system by the symmetry 
element used to create the asymmetric unit. The 
coefficients can be subsequently modified by chang- 
ing axial systems. 

The subscript q runs over equivalent positions in 
all the unit cells of the parent structure. P' (Rq)  o. is 
the /j element of the /zth irreducible representation 
of dimensions N~, for Rq, the qth of N = NsN,. sym- 
metry elements Rq = (Tq,tq) that shift r to Tqr + tq. N s 
is the number of equivalent positions per unit cell 
and Arc is the number of unit cells of the parent 
structure. Tq is a point-symmetry operator and tq is 
the associated translation. The Rq are the symmetry 
elements of the parent structure with scattering den- 
sity p(r)o corresponding to F(h)o. 

Constraints on the refinement consist of setting 
specific AS,pr to be identically zero, i.e. certain rela- 
tionships ZqApqAvnq r = 0 hold betweeen changes A•nq r 
in standard atomic parameters. Some of these (p 
specific) may be necessarily imposed as a conse- 
quence of the modulated structure maintaining cer- 
tain symmetry elements of the parent structure while 
others (n specific) may be necessarily imposed as a 
consequence of atoms having been on special posi- 
tions in the parent group model. There remains the 
possibility of imposing constraints simply to assist 
refinement. In this context the use of certain symme- 
try elements of the parent group to impose con- 
straints on relationships between thermal parameters 
of atoms no longer related by the symmetry of the 
modulated structure seems physically reasonable. 

The group theory of the parent crystal structure 
creates irreducible representations associated with 
points k on a grid in the Brillouin zone of the crystal. 
If the /zth irreducible representation is asso- 
ciated with the point k then F~'(Rq,)o. = 
exp(-ik.tq,)DU(Tq,)ij for the subgroup {Rq,} of sym- 
metry operations {Rq = Rq,Rq,,} for which Tq,k = k 
+ g where g is a Bragg reflection of the parent group, 
see Bradley & Cracknell (1972, chapter 5). Points on 
the star of k, i.e. the points Tq,,k, have equivalent 
sets of matrices D~Z(Tq,)ij. 

For a commensurately modulated structure there 
are only a finite number of values of exp(-ik.tu,  ) 
compared with an infinite number for an incommen- 
surately modulated structure. Thus a commen- 
surately modulated structure has an identifiable 
translationally repeating lattice and a primitive cell 
volume that is an integral multiple of the primitive 
cell volume of the parent structure. 

Although such a structure is capable of being 
refined as an unmodulated structure, there are 
advantages in using the commensurately modulated 

approach, especially when trying to understand 
problems in refinement. 

For pseudosymmetric or modulated structures we 
can use the irreducible representations for the sym- 
metry operators of a parent structure and say that 
the scattering density p(r) = ~'ppp(r) where pp(r) is the 
pth symmetrized component of the scattering den- 
sity. pp(r)= ZqApqp(Rqr) /Np  and Np = ZqlApql 2. F(h) 
= ~.pFp(h) where Fp(h) is the Fourier transform of 
pp(r). The orthogonality of irreducible representa- 
tions gives 

~qlF(Tq-lh)12/Nq = ~plFpOi)l 2 

where Fp(h) = Y qexp(ih.tq)ApqF(Tq ~h)/Np. For a par- 
ticular h the summations are only over those selec- 
tions of p (choice of # ,  i, j and hence k) and q for 
which Tq ~h--g + k. Nq is the number of pseudo- 
equivalent reflections with intensities IF(Tqlh)l 2. 
Other points on the star of k have been excluded. 

In the case of Bi4Ti30~2, Tq lh = g + k holds for all 
symmetry operations of the parent structure of 
F m m m  symmetry when considering the Brillouin- 
zone points k = 0 and k = a*. Eight irreducible rep- 
resentations are possible for each point but only two 
of those at each point m a y  be used to describe 
modulations within the constraint of B2ab symme- 
try. A further two at each point may be used when 
the symmetry is reduced to B l a l .  

For the B2ab constraint [[F(h)12+ iF(-h)[2]/2 = 
Y~plFp(h)[ 2 for calculated models and for any 
observed F(h) the values of Fp(h) are nonzero for 
only two values of p. Relative phases for the Fp(h) 
components select the origin and polarity (four 
degrees of freedom) of the structure. For anomalous 
scattering the difference between IF(h)[ and 
I F( -h) l  permits a correct choice of polarity. The 
phases of the extra Fp(h) components associated with 
B l a l  are determined by differences in magnitudes of 
the real and imaginary components of pseudo- 
equivalent reflections. This allows refinement of 
atom parameters away from values imposing B2ab 
symmetry. If the observed differences in intensity of 
pseudoequivalent reflections are reduced by twinning 
then refinement problems can be expected. Problems 
can also be expected when certain Fp(h) components 
dominate the data. 

Restricting ourselves to nonglobal parameters (i.e. 
excluding scale, extinction etc.) we can use a Taylor 
expansion to describe the structure factor as 

F(h) = F(h)o + ~,,Ypr[OF(h)/3s,prJoAs,pr 
i 2 

~- 2EnEprp,rt[ O F(h) /  t~Snpr69Snp,r,]o~SnprZ~np,r, -}- ... 

where the subscript o implies evaluation using the 
parameters associated with the parent structure. If 
the only variables are occupancy parameters (r = 1, 
say) and p(r)o corresponds to the p = 1 irreducible 
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representation in which all Aiq  equal 1, then the 
above series expansion terminates after the first- 
order terms and for other p values, Fp(h) = Y.n[dF(h)/ 
~Snpl]oZ~npl • 

If the only variables are for displacements of atom 
positions then the series is infinite as we are differ- 
entiating exp(ih.r)-type terms and the symmetry of 
terms in ASnpr, ASnprASnp .... etc. determines which 
Fp(h) component is contributed to by which particu- 
lar term in the series expansion. In particular, if p 
and p' are associated with Brillouin-zone points k 
and k' then the dSnprdSnptrt t e r m  is associated with a 
contribution for the point k + k'. 

Provided displacements are sufficiently small the 
first-order terms in the series are dominant and 
certain parameter combinations ASnp r a r e  determined 
by certain components of the data since Fp(h) is 
approximated by ~.nr[o~F(h)/o~Snpr]oASnpr . The apparent 
scale of Fp(h) data and hence dS,pr parameters may 
be altered by disorder and twinning. 

In the case of Bi4Ti3Oi2, refinement used standard 
atom parameters in a standard manner but results 
and reflection data were analysed using a modulated 
structure approach. The only constraints were to 
maintain B2ab symmetry for the anisotropic thermal 
parameters of atoms pseudorelated by this sym- 
metry. The only additional parameterization was a 
twinning parameter. 

Bi4Ti3012 and other Aurivillius phases may be 
described using displacements of atoms away from 
higher symmetry positions in an 14/mmm symmetry 
parent structure. Displacements can be considered in 
two parts. There is a distortion of the crystal lattice 
without change of fractional coordinates in the unit 
cell and there is also the change in fractional coordi- 
nates. In all likelihood the distortion of the lattice is 
a consequence of the symmetry lowering of the 
fractional coordinate displacements. BiaTi3Oi2 (along 
with a number of other Aurivillius phases) forms a 
structure with a B- (or A-) centred lattice and has a 

b. A transformation can be made so that the 
tertiary a ' +  b' and a ' - b '  directions of 14/mmm 
become the a- and b-axis directions of F4/mmm and 
transformed fractional coordinates can be calculated. 
The lattice distortion reduces the lattice symmetry to 
Fmmm. 90 ~ twinning is observed and corresponds to 
the freezing in locally of either one or the other of 
two equal energy structures. The observed B-centred 
structure is a consequence of modulations corre- 
sponding to reciprocal space vectors k = 0 and k = 
a* (or k = 0 and k = b* for the A-centred equivalent 
structure), a* and b* are defined relative to the axes 
of Fmmm. 

The Fmmm parent structure has atoms on special 
positions. The symmetries of the relevant s~ecial 
positions in Fmmm are 0,0,z 8(i) mm2; 0,0,~ 4(b) 

I I 1 1  I 1 I ~,~,0 ;~, ;~, 7~ mmm; ;~,;~,z 16(/) 2z; 8(e) 2/mz; 8(/) 222. 

For the purpose of developing a logical argument 
to describe the likely modulations we shall discuss 
primarily an A-centred lattice, with an implied trans- 
formation to a B-centred lattice (swap a and b, x and 
y, h and k). Comparison with previous work is most 
easily understood if we prefer the a direction to the b 
direction as the major polar direction in the crystal. 

We define Rq = (Tq,tq) to  be a symmetry operation 
where Rqr = Tqr + tq. Fmmm can be described as an 
abelian group of 16 symmetry operations modulo an 
A-centred lattice. Singly degenerate irreducible repre- 
sentations (p = 1-16) can be formed with characters 
,¥p(Rq) = --- 1. Operations related by A-centred lattice 
translations have the same value of )(p(Rq). The 
Fmmm parent corresponds to the p = 1 irreducible 
representation for which all X p ( R q ) =  +1. All other 
irreducible representations (p = 2-16) have half the 
Xp(Rq) values + 1 and half - 1. If modulations corre- 
sponding to two or more of the irreducible represen- 
tations coexist then the space group describing the 
overall symmetry contains only those operations for 
which Xp(Rq) = -k- 1 for each of the coexisting modu- 
lations. In particular if we consider modulations for 
the p = 1 irreducible representation and just one 
other irreducible representation then the resultant 
symmetry can be used as a label for an irreducible 
representation that is more informative than saying 
the pth tabulated one. This notation has been used 
before, for example by McConnell & Heine (1984). 

The scattering density component pp(R) is anti- 
symmetric with respect to symmetry operations for 
which X p ( R q ) =  - 1  provided anomalous dispersion 
is ignored. As a consequence the contribution Fp(h) 
of pp(r) to the structure factor is restricted in both 
phase and hkl index condition. 

There are eight irreducible representations associ- 
ated with k = 0, i.e. Fp(h) only contributes to hkl ooo 
or eee (o = odd, e = even), namely 

Fmmm, F2/m 11, F12/m 1, F112/m 
(structure-factor contribution real) 

F222, F2mm, Fm2m, From2 
(contribution imaginary) 

and eight associated with k = b*, i.e. Fp(h) only 
contributes to hkl eoo or oee, namelyt 

Ammm, Amaa, Abma, Abam 
(structure-factor contribution real) 

Abaa, Abmm, Amam, Amma 
(contribution imaginary). 

As a first approximation for refinement of a struc- 
ture we shall consider the possibilities that create an 
A-centred space group containing eight symmetry 

I 1 t The centre of inversion is at 0,0,0 for the first four and at z,a,0 
for the final four representations. The irreducible representations 
associated with k = 0, k = a*, k = b* are listed in Table 1. 
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Table  1. The irreducible representions of  Fmmm 
associated with the k = a*, k = b*, k = 0 points of  the 
Brillouin zone and their effective space-group labels 

(see text) 

O n l y  the  s y m m e t r y  e l emen t s  wi th  a ze ro  t r ans l a t i ona l  c o m p o n e n t  are  listed. 

1 2., 2y 2: - 1  m~ my mz 

X~ +1 +1 +1 +1 +1 + +1 +1 
)(2 + I  +1 - 1  - 1  +1 + - I  - 1  
X3 +1 - I  - I  +1 +1 - - 1  +1 
X4 +1 - 1  +1 - t  +1 - +1 - 1  
X5 + I  +1 +1 +1 - 1  - - I  - 1  
X6 + I  +1 - 1  - 1  - 1  - +1 +1 
X, +1 - I  - I  +1 - 1  + +1 - 1  
Xs +1 - I  +1 - 1  - 1  + - 1  +1 

k = a* k = b* k = 0 

Ammm Bmmm Fmmm 
Amaa Bmab F2/ml  I 
A barn Bbam F 112/m 
A bma Bbmb F 12/m 1 
Abaa Bbab F222 

Abmrn Bbmm F2mm 
Arnrna Bmmb Frnrn2 
Amam Bmam Fm~n 

elements per centred cell, i.e. four symmetry elements 
per primitive cell. Each space group corresponds to 
the common subgroup of two centrosymmetric A- 
centred orthorhombic space groups. Two pseudo- 
symmetry generators R~ and R2 can be used to select 
four irreducible representations of Fmmm, namely A 
with x t ( R I ) = x ~ ( R 2 ) =  1 corresponding to Fmmm, 
BI with x2(RI) = 1, x2(R2) = - 1 and B2 with x3(RI) 
= - 1 ,  x3(R2)= 1 corresponding to two centrosym- 
metric A-centred orthorhombic space groups whose 
common subgroup is the possible space group, and 
B 3 with Xa(R1)= X a ( R 2 ) = -  1 corresponding to an 
implied F-centred space group. The implied symme- 
try can be obtained by multiplying the characters of 
the irreducible representatives in Table 1. For 
example Abma and Amma imply F2mm, i.e. X 4 and 
)(7 imply )(6. The common subgroup is centrosym- 
metric and monoclinic when BI and B2 correspond to 
A-centred space groups with coincident centres of 
inversion, but noncentrosymmetric and ortho- 
rhombic otherwise. The symmetrized components 
Fp(h) of F(h) may be described as [F(h)___ F(Th)]/2 
where h and Th are pseudosymmetrically related 
reflections. Twinning must always be considered as a 
possibility. 

In Table 2 we have shown how displacements from 
points of higher symmetry in Fmmm transform. Two 
special positions are considered: (1) 0,0,z 8(i) mm2 
and (2) 11 :~,z,z 16(/') 2z. The other possible special 
positions relevant to Aurivillius phases (see above) 
select the value of z to coalesce pairs of equivalent 
special positions. Only equivalent positions describ- 

1 3 ing atoms between a and z are listed. Either A- or 
B-centring relates these atoms to those between _+ 
but this simply imposes an index condition (k + l = 
2n only or h + l = 2n only) on observed reflections. 
Contributions to structure factors for small dis- 
placements are categorized by the h and k indices. 
Different displacive modes have totally different 
functional forms for the displacements and elaborate 
the essential orthogonality of different Fp(h) com- 
ponents. 

The segmentation of structural information by h 
and k index is noteworthy. Table 3 selects from 

Table 2 the information specific to those irreducible 
representations for which the characters are + 1 in 
either A21am and B2ab, the space groups assumed 
for a first approximation of the structure of the 
Aurivillius phases mentioned earlier. 

The crystal structure of BinTi3O12 has been studied 
by Dorrian et al. (1971). Their structure can be 
described as being derived from the space group 
Fmmm using irreducible representations of the elec- 
tron density with effective space groups Fmmm, 
F2mm, Bmab, Bbab which Fourier transform to the 
real and imaginary components of h + k even and h 
+ k odd data respectively. However, the hkO reflec- 
tions with h even, k odd are weakly present in 
electron diffraction data (Withers et al., 1988) and 
the space group is Blal as suggested by optical 
measurements (Dorrian et al., 1971). 

There are four further possible irreducible repre- 
sentations compatible with Blal being a common 
subgroup of Fmmm. These correspond to Fl2/ml, 
Fmm2, Bbam and Bmam. The ferroelectricity shows 
Fmm2 and F2mm are both present and the weak hkO 
reflections show that at least one of Bbam and Bmam 
is present. 

Table 4 selects from Table 2 the segmentation of 
structural information for the extra irreducible repre- 
sentations allowed by dropping crystal symmetry to 
A lal or Bla l ,  which are the minimum symmetries 
compatible with the observed absence conditions. 
The four extra irreducible representations for the 
A-centred case correspond to F12/ml, From2, Abaa 
and Amaa. 

Implications for the identification of soft modes 

The ability to define a displacive modulation with a 
particular irreducible representation depends on how 
well Fp(h) can be obtained. Primarily, IF(h)l 2=  
IA(h)12+ IB(h)l 2 is observed and information from 
a trial model can be used to obtain an estimate of 
F(h) by saying that the phase exp( iah)-- [A(h)+ 
iB(h)]/IF(h)l is the same for both calculated and 
observed data in order for least-squares refinement 
or the evaluation of scattering density to take place. 
If data is twinned so that I Y(h)l z-- ~'qaqlF(Tqh)[ 2 is 
observed then estimates are made by saying [A(h)+ 
iB(h)]/[Y(h)[ is the same for both calculated and 
observed estimates. 

If A(h) is dominant over B(h), then this procedure 
makes the discrepancies in A(h) much bigger than the 
discrepancies in B(h) when actually the goodness-of- 
fit statistics can accommodate larger discrepancies in 
B(h) than in A(h). The consequence of this is that 
false structure solutions can be obtained which are 
stable under refinement conditions. 

The eee and ooo data are dominated by the parent 
structure. The existence of a large anomalous- 
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T a b l e  2. Func t iona l  f o r m s  f o r  s y m m e t r & e d  d i sp lacements  o f  isotropic a t o m s  

T h e  g e o m e t r i c  c o m p o n e n t s  o f  t h e  s t r u c t u r e  f a c t o r  f o r  t h e  s y m m e t r i z e d  d i s p l a c e m e n t s  o f  i s o t r o p i c  a t o m s  o n  d i f f e r e n t  e q u i v a l e n t  p o s i t i o n s  a r e  g i v e n .  

E q u i v a l e n t  p o s i t i o n s  r e l a t e d  b y  A c e n t r i n g  ( o r  B c e n t r i n g )  h a v e  b e e n  o m i t t e d .  O n l y  n o n - z e r o  v a l u e s  a n d  t h e  a s s o c i a t e d  i n d e x  c o n d i t i o n  a r e  l i s ted .  W h e n  z = 

0 o r  ], z e r o  c o n t r i b u t i o n s  a r e  i m p l i e d  s y s t e m a t i c a l l y  f o r  t h e  I i n d e x .  

(a )  D i s p l a c e m e n t  o f  a t o m s  f r o m  0,0 ,z ,  e tc .  in t h e  F m m m  p a r e n t  s t r u c t u r e  h = 2n + I, k = 2n + I 

x c o o r d i n a t e  
F I 2 / m l  8,0,z - 6 , O , - z  ~+6 ,~ , z  ~ - 6 , ~ , - z  h = 2 n ,  k = 2 n + l  
F 2 m m  6,0,z 8,0, - z ~ + 8,~,z ~ + 8,~, - z 
Abma (Bbmb) 6,0,z - 8,0, - z ~ - 6,~,z ~ + 6,~, - z h = 2n + 1, k = 2n 
A b m m  ( Bbmm) 6,O,z 6 , 0 , - z  ~ - 8,~,z ~ - 8,~, - z 

h + k = 2n 8cos(2~rl2.)cos(2rrh6) 
- 8sin(2~rlz)sin(2~'h6) 

8 icos( 2"Mz )sin( 2 zr h 6 ) 
h + k = 2n + 1 - 8sin(2~rlz)sin(2rrh6) 

8icos(2zrlz)sin(2~rh6) 

Fmrnm y c o o r d i n a t e  
F I 2 / m l  F 2 / m l  I 
F 2 m m  
Abma  (Bbmb) Fm2m 
Abrnm ( Bbmm) 

F I 2 / m l  

F 2 m m  
~d+a,-z 
~,~ - 6 , - z  Abam (Bbam) 
L~+a,-~ 
~,~ - 8 , - z  Abaa  ( Bbab ) 

F m m m  A m m m  ( Bmmm)  
F 2 / m l  1 
Fm2m Amrna ( Bmmb) 
Amaa  ( Bmab) 
Amain (Bream) 

y c o o r d i n a t e  

Fm2m 0,8 ,z  0 , 8 , - z  ~,~ + 6,z  
F 2 / m l l  0 ,8,z  O , - 6 , - z  ~,~ + 8,z  
Amaa  (Bmab)  0 ,6 ,z  O, - ~. - z ~,~ - B.z 
Arnam (Bream) O,6,z 0 , 6 , - z  ~,~ - 8,z 

h + k = 2n 8cos(2rrlz)cos(2rrkr)  
- 8sin(2rr/z)sin(27rkS) 

8icos(2~rlz)sin(2~rkS) 
h + k = 2n + ! - 8sin(2rr/z)sin(2~rkS) 

8icos( 2 rrlz )sin( 2 7rk r ) 

z c o o r d i n a t e  

F m m m  0,0,z 0,0, - z ~,~,z ~,~, - z 
From2 O,O,z + 6 0,0, - z + 8 ~,~,z + 8 ~,~, - z + 8 
A m m m  (Bmmm)  O,O,z + 8 0,0, - z - 8 ~,~,z - 8 ~,~, - z + 6 
A m m a  ( Bmmb ) O,O,z + 8 0,0, - z + 8 ~,~,z - 8 ~,1, _ z - 8 

h + k = 2n 8cos(2rrlz)cos(2~rl6) F m m m  
8icos(27rlz)sin(27rlS) From2 

h + k = 2n + 1 - 8sin(2"Mz)sin(2zrl6) A m m m  (Bmmm)  
8icos(2~rlz)sin(2~rlS) Aroma ( Bmmb)  

(b)  D i s p l a c e m e n t  o f  a t o m s  f r o m  ] , ] ,z ,  e tc .  in  t h e  F m m m  p a r e n t  s t r u c t u r e  

x c o o r d i n a t e  
F 2 / m l  l l + 6,14,z ~ - 6,],z l - 6,~,z I + 6,1,z 

- a , L -  z ~ + 6,1,- z 1 + a,l,z ~, - 6,1. - 2. 
Fm2m ,1 + 6,~,z ~ - 6,],z ~ - 6,~,z ~ + 6,],z 

l+a , ' , -z  ~-a,,',-z ,~-6,L-z l+a,,~,-z 
F 1 2 / m l  ~ + 6,~,z ~ + 6,],z ~ + 6, l ,z  I + 6,],z 

" -  8 .1 , -z  I -  a ,1 , -z  l -  8 ,~,-z  ~,- 6 , l , - z  
F 2 m m  ~ + 6, l ,z  i + 6, l ,z  I + 8, l ,z  ~ + 8,~,z 

l+a, l , -z  ,'+a,,~,-z ,~+ad,-z ~+8,1,-z 
Abam (Bbam) 1 + 8,1,z ~ - 6,1,z I + 8, l ,z  ] - 6,1,z 

I + a , 1 , - z  l - 6 , ~ , - z  1+a, ' , , -~  ~, -a ,~, -z  
Abaa (Bbab) ~ + 8,I ,z  ~ - 6,1,z ~ + 6,~,z ~ - 8,],z 

l -a .L-z  l+a,l,-z 1-a,t,,-z ~,+aJ,-z 
A m m m  ( B m m m )  1 + 6,],z ~ + 6,],z ~ - 8,I ,z  ~ - 6,],z 

l + a,L-z ~ + a,l,-z ~,- a,l,-z ~- a?,,-z 
A m m a  (Bmmb)  1 + 6,~,z 1 + 6,~,z ~ - 8,I ,z  ~ - 6,~,z 

l - a , L - z  ,~-a,L-z l+ad,--z 1+a,,~,-z 

h = 2n, k = 2n th k) 2 1 6 ( -  I) + ' cos(2~rl2.)cos(2~hS) F m m m  
(h  k) 2 - 1 6 ( -  I) + ' sin(2~'12.)sin(2~'hS) F 1 2 / m l  

16i ( -  1) + ' cos(2zrlz)sin(27rhS) F 2 m m  

h = 2n, k = 2n 

h = 2 n + l , k = 2 n + 1  

h = 2 n ,  k = 2 n +  l 

h = 2 n +  I , k = 2 n  

- 16( - l)(n + ~'~sin(2~'/z)sin(2~'hr) F2/rn 11 
16i( -  I)~h + *)'~cos(2rr/z)sin(2rrhS) Fm2rn 

- 16sin[27r(h + k)/4]cos(2~rlz)sin(2~rhS) Abarn (Bbam) 
- 16isin[27r(h + k)/4]sin(27rlz)sin(2~rhr) Abaa (Bbab) 
- 16sin[2~r(h + k)/4)]cos(2~rlz)sin(2~rhr) Arnrnm ( B m m m )  
- 16isin[27r(h + k)/4]sin(2~rlz)sin(27rhS) Aroma (Bmmb)  

~,I + a,z 1,1 + 6#  ~,l + 6,2. ~,,~, + a,z 
l , l _  6,--Z l?,_ a,--Z ~,l_ a,--Z 1,1- a , -Z  
I,' + 6,2. "?, + a,~ 1,1 + a,z I?, + a,z 
H + a , - z  ,',l+6,-z ,~,~+a,-z H+a,-2. 
I,, ~ + a,z 1,I - 6,z I,~ - 8,z ,~,I + a,z 
I J - a . - ~  ~,,~+a,-z ,~,~+8,-z H - a , - z  
L,' + 6,2. ,~,I - a,z ~,~ - 8,2. 1,1 + 6,z 
1,~+a,-z H - a , - z  L ' - 8 , - z  H+8 , -z  
LI+ 6,z ~ ~ ~:_ ~,~ + 8,z  6,z  8,z 4,4 - -  4,4 

414 g ,  " ~,,4 "~- 6 ,  - -  Z 414 - -  6 1  - -  Z 4 , 4  - -  6 ,  - -  Z 

4,4 ~- 6 , 2 .  4,4 - -  6 , 2 .  

1 , 1 -  8 , - z  ~ ~ -  8 , - z  ~ ~ & - z  ~ 4,4 ~" 4,4 "~" 8 ,  - -  g 4 ,4  

L I +  a,z " " ~ 4,4 - 6 ,z  4,4 + 8,z  ~,~ - 8,z 
L , ~ + a , - z  ~ , 1 - & - z  ~ , 4 + a , - z  , , , - & - z  
~,a + 6,z  a,a - 8,z a,a + 8,z  4,~ - 8,z 
a , a - 6 , - z  4 , , + 8 , - z  4,4 6 1 , - z  ~ , ~ + 8 , - z  

16( - I)¢n* ~V~cos(2~rlz)cos(2~rk6) F m m m  
- 16( - 1)¢h • ~)'~sin(2rr/z)sin(2rrkS) F 2 / m l  I 

16l"(- I)~*~)acos(2rrlz)sin(2~rkS) Frn2m 
- 16( - I )~h • kV~sin(27r/z)sin(2rrk6) F 12/m 1 

16/( - I )in* ~'~cos(2rrlz)sin(27rk6) F2mm 
- 16sin[2~'(h + k)/4]cos(27rlz)sin(2~'kS) Amrnm (Brnrnm) 
- 16isin127r(h + k)/4]sin(2~rlz)sin(2rrkS) Aroma (Bmmb)  
- 16sin[27r(h + k)/4)]cos(2~rlz)sin(27rkS) Abam (Bbam) 
- 16isin[2rr(h + k)/4]sin(2rrlz)sin(2~rkS) Abaa (Bbab) 

z c o o r d i n a t e  

F m m m  ~,J,z L1,z ~,~,z 1,~,z 
L~,-z H,-z H,-2. H,-z 

From2 14,],z + 8 l , l ,z  + 6 ~,1,z + 6 1,],z + 8 
LL-2.+a LL-z+a H,-z+a i?,,-z+6 

F|12/m t4,~,z + 6 J,l,z - 6 ~,l,z - 6 ~,~,z + 8 
L ' , - z - a  H , - z + a  H,-2.+a H , - z - 6  

F222 ],l,z + 6 ],,~,z- 6 1,l,z - 6 ~,~,z + 6 
~,l,-z+a l,,~.-2.-a H , - z - 6  L1.-z+a 

Abma (Bbmb) L l , z  + 6 l,~,z + 6 1,~,z - 6 3,~,z - 6 
U4,-z + a LL-2. + a 1,L-z-8 1,1,-z- a 
~,a,z + a 8 ~,Lz - a ~,Lz - a A b m m  (Bbmm) ~ t j 4 , 4 ,  2" -}- 

a,a ,  - z - 6 4,4,  - z - 8 , , a ,  - z + 6 4,4,  - z + 6 

Amaa  (Bmab) J J - + 8 J 3 ~ j ~ 4,4,~ ;~,4,z - 6 4,4,z + 8 4,4,z - 6 
/ J  I ]  3 1  ~ tk  
4,4 ,  - z + 6 ~,4 ,  - z - 8 4 ,4 ,  - z + 6 4,~,, - z - 6 

A m a m  (Bream) i , l , z  + 6 ~,],z - 6 l,~,z + 6 1,1,z - 6 
L l , - z - a  Ll , -z+a 1,,',-z-a H , -z+a  

h = 2n, k = 2n 16( - l)(h + k~,2cos(2zrlz)cos(2~rl6) F m m m  
161"( - I)(h * k~aCOS(2rrlz)sin(2zrl6) Fmm2 

h = 2n + I, k = 2n + I - 1 6 ( -  I) (h* k~'2sin(2rrlz)sin(2~rl6) F l l 2 / m  
16i( - I )~ * ~)ncos(2~'lz)sin(2~rl6) F222 

h = 2n, k = 2n + I - 16sin[2zr(h + k)/4]cos(2zrlz)sin(2zrlS) Amaa  (gmab)  
- 16isin[2zr(h + k)/4]sin(2~rlz)sin(2~'lS) Amain (Bream) 

h = 2n + I, k = 2n - 16sin[2zr(h + k)/4)]cos(2zrlz)sin(2~rlS) Abma  (Bbmb) 
- 16isin[27r(h + k)/4]sin(2zrlz)sin(2~rl6) Abram (Bbmm) 

dispersion contribution of  A f " =  10-559 for Bi with 
Mo K a  radiation allows a substantial contribution 
from iB(h) to the observed data and distinguishes 
F ( h k l )  from F ( h k l )  data because of  the breakdown of  
Friedel's law. However, it also dominates the imagin- 
ary contribution and, consequently, the phase of  the 
individual F 2 m m  contributions of  other atoms will 
be very doubtful unless quality data, carefully correct- 
ed for absorption are used. The Ti atoms also show 
anomalous dispersion, A f " =  0.446, and the F 2 m m  

displacement of  these atoms produces a significant 
contribution to A(h). However, the Af" =0 .008  

value for 0 is effectively zero. Large x displacements 
of  0 atoms that correlate with U~I thermal param- 
eters are detectable in the F m m m  component of  the 
scattering density, but the signs of  these dis- 
placements can only be determined by the F m m 2  

component at a stage of refinement when low R 
factors have already been obtained using an arbi- 
trary phase for the displacement. 

However, it should be noted that the magnitude of 
the derivatives of  the structure factor with respect to 
displacements from the parent structures do not 
depend on the magnitude of the displacements to a 
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Table 3. Distribution o f  first-order in formation for the 
atom displacements allowed in either A21am or B2ab 

If  a displacement exists in isolation there is an implied space-group sym- 
metry. This imposes an index selection and a choice between a real and an 
imaginary contr ibution to the structure factor associated with the dis- 
placement. This assumes no anomalous  dispersion in atomic scattering 
factors. (I) Refers to eee data,  (2) refers to ooo data, (3) refers to either eoo 
(A) or  eoe (B) data, and (4) refers to either oee (A) or oeo (B) data. 
Contr ibutions are real for Abam and Bmab, and imaginary for F2mm,  
Amain and Bbab. 

Special position 
in Fmmm Sx  6y ~z 

0,0,z 8(i) ram2 F2mrn (I), (2) Amain Bmab (3), (4) --  
0,0,~ 4(b) mmm F2mm (I), (2) Amain (3), (4) 
l,],z 16(/.) 2: F2mm (I) Abam Bbab (3) F2mm (2) Abam Bbab (4) Amain Bmab (3) 
~,~,0 8(e) 2/m: F2mrn (I) Abam (3) F2mm (2) Abam (4) Bmab (3) 
],I,~ 8(]) 222 F2mrn (I) Abarn Bbab (4) Amarn Bmab (3) 

Table 4. Distribution of  first-order information for the 
atom displacements allowed by reducing A21am or 

B2ab symmetry to A 1 a 1 or B 1 a 1 

See comments  in Table 3. Contr ibut ions are real for F l 2 / m l ,  Amaa and 
Bbam, and imaginary for Fmm2, Abaa and Bmam. 

Special position 
in Fmmm 6x 6y 6z 

0,0,z 8(0 ram2 F12/ml (1), (2) Arnaa Bream (3), (4) From2 (1), (2) 
0,0,~ 4(b) mmm --  Bream (3), (4) Fmm2 (I), (2) 
l,],z 16(/') 2: F12/m1 (I) FI2/ml (2) From2 (1) 

Abaa Bbam (3) Abaa Bbam (4) Amaa Bream (3) 
4t,],0 8(e) 2/mz Bbam (3) Bbam (4) From2 (I) Amaa (3) 
~,.{,~ 8(]) 222 Abaa Bbam (3) FI21ml (2) From2 (I) 

first approximation. Consequently, the reliability of 
all O-atom displacements will be similar in absolute 
terms, provided the signs of displacements are cor- 
rect in order that F(h) phase reliability is adequate. 

It should also be noted that when displacement of 
an atom derives from more than one irreducible 
representation correlations occur in the expansion of 
exp(27ri~.mh.t3m) describing the modification to the 
geometric term for an atom displaced by ~.m~m from 
a special position in the parent structure. This is best 
seen by looking at terms involving (h.rm)(h.~,) in the 
series expansion. The symmetry of the contribution 
of such a term is obtained by multiplying the irredu- 
cible representations for t~ m and 6,,. These corre- 
lations have the ability to resolve problems in the 
phase of displacements, especially when the dis- 
placements are large. 

If the F2mm symmetry contribution to an atom's 
displacement is phased wrongly then this error will 
propagate into its correlation terms with the Bbab 
and Bmab contributions. If the eoe and oeo data is 
dominated by A(h) (as it turns out to be) then the 
Bmab contribution is totally refinable, and this 
includes the correlation between the F2mm and Bbab 
contributions. Unfortunately, there is no Bbab first- 
order term for the site 8(e) :~,],0 and the phasing of 
the F2mm displacement from this site will depend 
totally on the quality of the F-centred data. 

It is also unfortunate that if both the F2mm and 
the Bbab contributions to an atom's displacement are 
wrongly phased then the resulting correlation of 
Bmab symmetry will be correctly phased. Only O 
atoms contribute to the Bbab component which cor- 
responds to iB(h) for the eoe and oeo data. The 
implicit assumption of the least-squares refinement 
that calculated phases are correct means that the 
overall Bbab contribution cannot be incorrectly 
phased. What is more, even if the quality of F- 
centred data is sufficiently good to correctly phase an 
F2mm displacement, the assumed correctness of 
phase for Bbab may sufficiently restrain the 
refinement so as to maintain the initial model for the 
phase of the F2mm displacement. 

However, the y displacement of a Bi atom can 
make a large contribution to Bmab. When this hap- 
pens the consequence of anomalous dispersion is to 
put sufficient phase information into iB(h) so as to 
correlate with the Bmab component. Consequently, 
even if the refinement is incapable of correcting the 
phase for a displacement, there will be sufficient 
information content to select the correct structure 
from the refinement statistics of the options. 

When the symmetry is reduced to Blal ,  the 
F12/ml and Bbam contributions are readily resolved 
as they create differences between the magnitudes of 
the real components of hkl and hkl data. If the 
phases for large displacements associated with B2ab 
symmetry are correct, meaningful refinement of the 
Fmm2 and Bmam components should result from 
(h.6,,)(h.~,,) correlations, e.g. F2mm*Fmm2 = Bbab* 
Bmam = F12/ml and Bbab*Fmm2 = F2mm*Bmam 
= B b a m .  

The possibility of partial twinning that overlaps 
hkl and hki data is an extra complication. Twinning 
reduces the difference between the intensities of hkl 
and hk7 data. In Bi4Ti30,2 90 ° twins are readily 
detectable by grain boundaries but a polarizing 
microscope is necessary to detect the other form of 
twinning. The fact that the crystals are plates perpen- 
dicular to e* only allows the guarantee that the 
crystal used for data collection had no 90 ~ twinning 
and was not a 1:1 twin for hkl and hkl data. 

If we define F,(hkl) = [F(hkl) + F(hkl)/2 and 
F2(hkl)=[F(hkl)-F(hkl)]/2 then F,(hkl) is the 
Fourier transform of the Fmmm, F2mm, Bmab and 
Bbab components of the scattering density and 
F2(hkl) is the Fourier transform of the F12/ml, 
Fmm2, Bbam and Bmam components. Now ( 1 -  a) 
]F(hkl)l 2 + alF(hkl)l 2 = IFl(hkl)l 2 + I~(hkl)l 2 + (1 - 2a) 
[F,(hkl)*F2(hkl) + Fl(hkl)F2(hkl)*]. If twinning is 
ignored for data with IFl(hkl)J>>lF2(hkl)!, then 
F(hkl)=Fl(hkl)+F2(hkl)  will be substituted by 
Fl(hkl) + ( 1 -  2a)F2(hkl) to best fit observed data. 
This reduces the amplitude of the displacements 
associated with Fz(hkl) by ( 1 -  2a). However, data 
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that have F~(hkl) identically zero are observed as 
IF2(hkl)l 2 and are not affected by twinning. This is 
the case for the hkO pseudo-b-glide absences. The 
collection and monitoring of this data is an essential 
component of the refinement. 

Use of anisotropic thermal parameters as an error 
diagnostic 

If a refinement of Bi4Ti3Ol2 is carried out using 
isotropic thermal parameters the tendency is for the 
refinement to be dominated by the centrosymmetric 
parts of the structure-factor calculation. Consider, 
for example, displacements from the position i1 ~,Zl,Z 
16(/) 2z in Fmmm. Reduction of the symmetry to 
B2ab creates two general positions :~ + AI, z~ + A2, z + 
A3 and :~ + A4, 3 + As, z - A3, and displacements A 
can be decomposed into displacements ~ ,  of F2mm, 
Bmab and Bbab symmetry. The (h.~m)(h.~n) corre- 
lations embodied in exp(27riYmh.6,) where h = ha* 
+ kb* + lc* make the following contributions to the 
real components of the structure factor: 

Fmmm = F2mm* F2mm + Bbab* Bbab + Bmab* Bmab 

(+  for atom 1, - for atom 2) 

: [(~,~ + A~)/h 2 + ( ~  + ~ b k  2 

_+ 2 ( ~ , , a 2  - a 4 a s ) h ~ ] / 4  + ~ I  ~ 

Bmab = Fmm2*Bbab (+ for atom 1, - for atom 2) 

= _+ [(~,~ - ~4~)h2 + ( ~  - ~ ) ~  

-- 2(A1A 2 + A4As)hk]/4. 
We note that only the hk contribution is sensitive 

to the phases of the A i components. If isotropic 
atoms are used, AIA 2 and A4A 5 do not change sign 
during refinement. The real component of h + k = 2n 
data determines the parent structure and (A 2 + A2), 
(A 2 + A 2) and A 2 while the real component of h + k 
= 2 n + l  data determines A3 and that A 2 and A 2 
belong to atom 1, while A 2 and A 2 belong to atom 2. 
If alternatives for A1A2 and A4A 5 are tested using 
comparative isotropic refinements, then there are 
four independent sign combinations for each atom. 

Functions exp(2 7ri~mh. ~m) and exp[ - (2"n'~'.mh. ~m)2/ 
2] give identical terms for the (h.~m)(h.6,) corre- 
lations. Consequently, if the atoms are held fixed at 
the positions obtained from isotropic refinement and 
anisotropic thermal parameters are then refined, the 
result will be that errors in AIA 2 or A4A 5 will be 
compensated for by the U~2 thermal parameters of 
the respective atoms. This can be used as an error 
diagnostic and clearly distinguishes false minima. 

If positional and anisotropic thermal parameters 
are refined simultaneously, positional parameters will 
tend to move so as to correct errors in iB(hkl) and 
these movements will be compensated by changes in 

the thermal parameters so that the terms in 
(h.rm)(h.6,,) stay correct. However, the fourth-order 
term in (h.rm)(h.~n)(h.rp)(h.~q) has a coefficient 
(277")4/24 for the positional term exp(2"n-iZmh.rm) but 
(277")4/8 for the thermal term exp[-(27rY.,,,h.rm)2/2]. 
As a consequence, when displacements are suffi- 
ciently large the original displacements tend to be 
preserved and should there be no error in the hk term 
an error in model will only by detected by changing 
the signs of both the x and y displacements and 
running comparative refinements or by looking at 
the variation of occupancy between the two possible 
sites. 

It was found that 0(6) tended not to move when 
A 4 and A5 were both wrongly phased because the 
displacement from TM :,,:,,z is so large. However, 0(5) 
moved from its position for isotropic refinement 
when d~ and A2 were both wrongly phased. We were 
unable to swap the phases of d~ and A2 of 0(5) when 
either or both of these were wrong and A 4 and A5 
were both also wrong. However, if /14 and A 5 
describing 0(6) are both correct 0(5) will refine to 
the correct position. The ready correction of O(1) 
was probably because its displacement has no first- 
order Bbab component. Three unconstrained 
refinement cycles were necessary when O(1) to 0(5) 
was corrected and nonpositive-definite thermal 
parameters featured in the first two cycles. The phase 
of the displacement was only corrected in the second 
cycle after large thermal parameters had been 
evaluated in the first cycle to compensate for an 
initial lesser atom movement. The third cycle reduced 
the anisotropy as the atom moved away from ~ ~,?l,Z. 

One can conclude that a correct solution 
corresponds to an anisotropic refinement in which 
thermal parameters are small and there is minimum 
anisotropy. Also a check involving changing the sign 
of displacements for both x and y of an atom should 
make refinement parameters worse. The final solu- 
tion we obtained satisfied these criteria. Misbehaved 
solutions exist with R factors only 1%o higher. Ther- 
mal parameters also become more isotropic when the 
symmetry is reduced to Blal  and when twinning is 
taken into account. 

Experimental 

Polycrystalline specimens of Bi4Ti3Ol2, Bi2BaNb209, 
Bi2SrNb209, Bi2SrTa209 and Bi3TiNbO9 were pre- 
pared from > 99.9% purity starting materials. The 
appropriate oxides were used except for the alkaline- 
earth metals where carbonates were used. Stoichio- 
metric mixtures of the appropriate ingredients were 
heated in open platinum crucibles with a final 
annealing temperature of 1373-1423 K. Single 
crystals of BiaTi3012 were grown according to the 
method described by Cummins & Cross (1968). 
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Reaction products were examined by X-ray 
powder diffraction (XRD) and electron diffraction. 
XRD patterns were recorded using a Guinier-Hagg 
camera with Cu Ka~ radiation and Si as an internal 
standard (NBS standard No. 640). Refined unit-cell 
parameters are listed in Table 5. Electron diffraction 
patterns were recorded on Jeol 100CX and Philips 
EM430 transmission electron microscopes. 

The crystal selected for X-ray diffraction data 
collection, after careful examination under a polariz- 
ing microscope, was considered to be free of 90 ° 
twinning and, as far as could be ascertained using a 
tilting stage, possessed no domains in which there 
were differing amounts of c-component polarization. 
The cut crystal approximated a square plate (0-210 × 
0.210 x0 -015mm)  corresponding to approximate 
(110), (110), (001) reciprocal-space directions. Precise 
measurements of faces were made using the method 
devised by Alcock (1970). Dimensions used for the 
absorption correction were (001) 0.0073 (1), (001) 
0.0073 (1), (102,82,95) 0.136 (2), (93,85,63) 0.080 (2), 
(9--9,87,7---6) 0.118 (2), (91,9--2,82) 0.101 (2)mm. A full 
sphere of M o K a  data (5243 B-centred mono- 
chromator data) out to 0 = 30 ° was recorded on a 
Philips four-circle automated diffractometer at 
1 ° min - i  for a scan width of 1"3 ° with backgrounds 
of 15 s per side. The numerical absorption correction 
of S H E L X  (Sheldrick, 1976) chose 2610 grid points. 
The linear absorption coefficient /z(Mo Ka) was 
747.3 cm-1 [856.6 cm- I  was used by Dorrian et al. 
(1971)]. Scattering curves, atomic absorption coeffi- 
cients and anomalous-dispersion corrections were 
from International Tables for X-ray Crystallography 
(1974). The average UB matrix for data collection 
was 

- 0-009426 0-008097 0.021526 
0-086406 0.098078 0.000035 

- 0-096901 0-086675 - 0.002051 

Absorption correction 

Values of - l n A  varied between 1-0 and 4-4. The 
consequence of the way the crystal was orientated 
relative to the goniometer was that the worst 
scenario for reflections related by mmm symmetry 
operations was that four had large values of - l n A  
while the other four did not. For example 4748, 448, 
7448, 474g have values of - l n A  = 2.47, 2.49, 3.50, 3.52 
while their lml  related counterparts 448, 448, 448, 
448 had values of 1.21, 1.20, 1.21, 1.21. The members 
of a quartet were related by 112/m symmetry and the 
cut crystal approximates mmm symmetry. Had the 
crystal had exact mmm external symmetry and had 
the (001), (110) and (110) faces been aligned with the 
goniometer axes with c* horizontal then the absorp- 
tion correction would have had exact l12/m symme- 
try. The crystal was mounted close to this orientation 

and one readily sees the rapid change in large 
absorption corrections with orientation. Conse- 
quently, since the orientation matrix changed slightly 
during data collection, each absorption correction 
was made with the orientation matrix relevant at the 
time of collection. The l ml symmetry relating quar- 
tets of reflections with small and large - l n A  corre- 
sponds to the correct diffraction symmetry for a 
properly corrected crystal. 

As a requirement for the absorption-corrected 
data to be deemed usuable it was decided that the 
statistic for merging across this symmetry element 
had to be better than the statistic for merging for 
m ll  symmetry and l lm symmetry. This was 
achieved by rejecting the small part of our data 
which was collected after a power failure interrupted 
collection and by optimizing the dimension of the 
thin direction of the crystal between the (001) and 
(001) faces by the evaluation of merge statistics 
between the truly equivalent hkl and hT:l reflections. 
These staticstics were subdivided into eee, ooo, eoe 
and oct subsets so that potential agreement factors 
for refinement could be assessed. 

Results o f  data merging 

Overall values of Ri,t=Y.hY~(IF(h,)[ 2 -  [F(h)12)/ 
Y.hlF(h)l 2 were calculated where IF(hz)l 2 is the ith 
observation of an equivalent or pseudoequivalent of 
the mean quantity IF(h)l 2. Assuming mmm, 2mm 
and lml symmetry, values of 0.0492, 0.0245, 0.0220 
respectively were obtained using all observed data 
collected before a power failure. This statistic does 
not downweight data with large absorption correc- 
tions. The removal of the 693 observed and un- 
observed data with - l n A  > 2.5 reduced the values 
of R but only by about 0-001. A thickness of 
0-0146 (2 )mm was obtained for the thin dimension. 
This precision is not obtainable optically. A statistic 
that downweights data with large absorption correc- 
tions was also calculated. Values of wR = [ Z h N h ~ . i W h i  
× (IF(hi)l- IF(h)l)2/7.h(Nh - 1 )ZiWh,IF(h)12] ~/2, where 
Nh is the number of independent observations of 
IF(h)l 2, were obtained using S H E L X  and gave the 
following results for data of different index condi- 
tions. 

Data  used m I 1 I m 1 I 1 m 
All 3721 reflections 0-0370 0.0138 0-0180 

(absorpt ion uncorrected)  0-3067 0.1693 0.0908) 
1006 eee reflections 0.0372 0-0147 0.0219 
928 ooo reflections 0.0363 0-0124 0.0135 
872 eoe reflections 0-0366 0-0128 0-0173 
915 oc t  reflections 0.0460 0.0131 0-0297 

Selection o f  data 

Because data with high - l n A  were duplicated by 
equivalent data with low - I nA it was decided not to 
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Table 5. Refined unit-cell parameters (1~) for some 
A urivillius phases 

a b c Space group 
Bi,Ti30~2 5.450 (1) 5-4059 (6) 32.832 (3) Blal 
Bi2BaNb209 3-9334 (2) 3.9334 (2) 25.603 (2) 14/mmm 
Bi2SrNb209 5.5094 (4) 5-5094 (4) 25-098 (3) A2~am 
Bi2~rTa209 5-5177 (5) 5.5177 (5) 25.040 (4) A2tarn 
Bi~TiNbO9 5.4398 (7) 5.3941 (7) 25.099 (5) A2tam 

use any data with - l nA  > 2.5. During refinement 
anisotropic secondary-extinction corrections were 
found to be necessary and as a consequence 
unmerged data were used since the correct evaluation 
of the anisotropy requires unmerged data. It was also 
decided not to modify weights from those imposed 
strictly by counting statistics. The adding of an 
arbitrary percentage error would have increased the 
relative weight of data with large absorption correc- 
tions compared to those with small corrections. 
Refinement used 3028 data. Of these 189 were con- 
sidered to be unobserved [I < 2~r(/)] and were calcu- 
lated solely to compare their statistics with the 5 hkO, 
k odd reflections considered to be definitely 
observed. 

Refinement was monitored by segmenting data 
into seven categories (Table 8). Data for which 
sin0/A < 0.2 A-~ were isolated as being more intense 
and highlighting secondary-extinction effects. Data 
considered to be unobserved were also isolated. The 
remaining data were separated into four sets accord- 
ing to the hkl index conditions of Table 3. The 
observed hkO, k odd data were also isolated. These 
data are not affected by twinning because they con- 
tain contributions from only the Bbam and Bream 
symmetry components of the scattering density. 

Refinement of the structure of Bi4Ti3Oi2 

The initial model used isotropic thermal param- 
eters for all atoms starting with the parameters 
of Dorrian et al. (1971) in space group B2ab. A 
check on Friedel's law gave a refinement cycle with a 
value for RI = Y~hllFobs(h)l- IFcalc(h)ll/~hlFobs(h)l 
of 0-062 compared with 0.094 for the incorrect 
polarity. No atoms moved substantially. Anisotropic 
refinement then followed and in three cycles the O(1) 
and 0(4) atoms first went highly anisotropic, then 
changed the sign of their x displacements and then 
reduced anisotropy. Residual anisotropy consistent 
with a Bbam rotation of a TiO6 octahedron was 
evident for O(1). The inclusion of this rotation 
reduces the symmetry to Blal. 

The segmentation of data clearly showed that 
secondary extinction was present. Data with sin0/a 
< 0-2 A- l  calculated substantially larger than obser- 
vation on average while other data fitted well. An 
isotropic extinction correction could not reduce the 
value of R~ for this data below 0.15 and so the 

anisotropic extinction parameterization described by 
Coppens & Hamilton (1970) was used. Type 2 
extinction was preferred over type 1 because the 
resulting parameterization maintained crystal sym- 
metry whereas the other option did not. In the final 
refinement cycle, data with sin0/A < 0-2 A-1 had a 
value for R1 of 0.031. Removal of the extinction 
correction changed the scale of these 31 data so that 
Zulfca~c(h)l/ZhlFobs(h)l = 1"31. Values of W'II = 

10.5(4), W[2=0-38(2), W~3=5.1 ( 2 ) a n d  W~3 = 
-0-1 (3) were obtained. In type 2 extinction the 
reference direction is in the plane of the incoming 
and outgoing beams and at right angles to the 
incoming beam. At low angles this puts this direction 
almost coincident with the scattering vector h. The 
fact that the prinicpal axes of W' align with the 
crystal axes creates the observation that the extinc- 
tion predominantly changes the mean intensity of 
reflections related by mmm symmetry and not 
differences between the reflections, as evidenced in 
the merge statistics obtained using raw data. The 
intense 020 reflection is the most affected and corre- 
sponds with the fact that W~2 is the smallest eigen- 
value of W'. 

Anisotropic refinement in space group Blal gave a 
final value for R~ of 0.027 for the observed data and 
the positional parameters of model 2 in Table 6 with 
suspicious anisotropic thermal parameters for 0(5) 
and 0(5)'. Re-refining with isotropic atoms for O(5), 
O(5)', 0(6) and 0(6)' returned 0(5) and 0(5)' 
towards the positions of Dorrian et al. and increased 
R~ to 0.030. Projecting the amounts of each displa- 
cive mode it is seen that the signs of the F2mm and 
Bbab components for 0(5) to 0(6)' do not change 
and that this sign is determined by the 0(6) and 
0(6)' atoms. Using the TiO6 octahedron involving 
O(1) and O(1)' as a model, a similar geometry could 
be obtained by changing the sign of the x and y 
displacements for the 0(6) and 0(6)' atoms. 

Anisotropic refinement of this model reduced R~ 
to 0.020. Residual anisotropy was consistent with the 
Bbam mode being too small in amplitude as a result 
of twinning reducing the difference between [F(hkl)l 
and IF(hk])l data. Isolation of the five hkO, k odd, 
reflections considered to be definitely observed 
showed that k=Y.hlfcalc(h)l/YhlFobs(h)l was only 
0.21, while the value for the remaining unobserved 
data [I < 2~r(/)] was just over 1. A twin model was 
consequently refined to give a final R~ of 0.0177 with 
k = 0-80 for the five weak data and 1.11 for the 189 
unobserved data. 

A twin ratio of 0-629 (5):0.371 was obtained. The 
value of ( 1 - 2 a ) = 0 " 2 5 8  scales the difference 
between IF(hkl)l and IF(hk-DI data, see earlier, and 
results in U~2 for the O(1) and O(1)' atoms changing 
sign and becoming effectively zero (Table 7). The 
only constraints on the refinement, carried out using 
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Table 6. 

Model 1 gives the coordinates of  Dorrian 
the correct structure for which 

Bi(l) 0 (-)* 
Bi(l)' 0 (-)* 
Bi(2) - 9 (3) 
Bi(2)" - 9 (3) 
Ti(l) 452 (8) 
Ti(2) 533 (6) 
Ti(2)' 533 (6) 
O(l)  2070 (40) 
O(1)' 2070 (40) 
0(2) 2640 (70) 
O(2)' 2640 (70) 
0(3) 730 (40) 
0(3) '  730 (40) 
0(4) - 400 (40) 
O(4)' - 400 (40) 
0(5) 2940 (40) 
0(5) '  2940 (40) 
0(6) 1590 (40) 
O(6)" 1590 (40) 

Fractional coordinates for different refinements of Bi4Ti3012 

e t  al. (1971), m o d e l  2 gives the coordinates for a false minima at Rt = 0.027 and model 3 gives the coordinates for 
R~ = 0.018. Fractional coordinates are multiplied by 104. Only model 3 included a twinning parameter. 

Model 1 Model 2 Model 3 
5022 (2) 5668 (0) 19 (I) 5023 (1) 5669 (I) 30 (1) 5023 (I) 5673 (1) 
4978 (2) 4332 (0) 15 (I) 4972 (1) 4333 (1) 13 (1) 4977 (1) 4336 (1) 
4801 (1) 7114 (0) - 5  (I)* 4802 (1) 7113 (0)* -21  (I) 4793 (1) 7113 (0)* 
5199 (1) 2886 (0) 5 (I)* 5195 (1) 2887 (0)* 21 (I)* 5185 (I) 2887 (0)* 

0 (-) 5000 (-) 432 (3) - 3 (9) 5002 (3) 446 (2) - 13 (6) 5007 (2) 
1 (1) 6286 (1) 501 (9} 1 (6) 6288 (3) 520 (6) - 4  (4) 6289 (2) 

- 1 (1) 3714 (1) 493 (9) - 3  (6) 3714 (3) 499 (6) 2 (4) 3717 (2) 
2780 (50) 4967 (8) 3056 (18) 2588 (18) 5086 (5) 2990 (12) 2760 (12) 5102 (3) 

-2780  (50) 5033 (8) 3245 (17) -2375 (17) 4934 (5) 3548 (11) -2179 (11) 4942 (3) 
2520 (90) 2501 (7) 2535 (24) 2570 (24) 2506 (9) 2704 (17) 2442 (16) 2495 (6) 
7480 (90) 7499 (7) 2537 (24) 7436 (24) 7494 (9) 2736 (16) 7571 (16) 7489 (6) 

250 (60) 5596 (8) 916 (27) -652  (24) 5594 (6) 913 (18) - 705 (16) 5605 (4) 
-250 (60) 4404 (8) 913 (27) 630 (24) 4415 (6) 918 (18) 587 (16) 4424 (4) 

740 (50) 6815 (8) 553 (36) 508 (29) 6816 (8) 552 (24) 584 (19) 6825 (5) 
- 7 4 0  (50) 3185 (8) 555 (36) -501 (29) 3191 (8) 568 (24) -441 (19) 3195 (5) 
2150 (60) 6215 (8) 2469 (27) 2544 (23) 6118 (8) 2904 (18) 2800 (15) 6121 (5) 

-2150 (60) 3785 (8) 2480 (27) -2517 (23) 3881 (8) 2962 (18) -2659 (16) 3892 (5) 
-3000  (50) 6310 (8) 1510 (25) -2945 (23) 6227 (8) 3677 (17) - 1959 (15) 6244 (4) 

3000 (50) 3690 (8) 1465 (25) 2980 (23) 3770 (8) 3496 (17) 2164 (15) 3773 (4) 

* These coordinates were constrained to define the origin. 

Table 7. Uij thermal parametersfor Bi4Ti3Oi2 

The thermal parameters of  atoms X and X' related by the pseudo-2x 
symmetry axis were constrained so that Uis = U , / f o r / j  = 11, 22, 33, 23 and 
U~ s = - U , / f o r / j =  12, 13. Values are x 10 -3 A 2. 

U .  U ~  U .  U,2 U,3 U23 (U)  
Bi(l) 8 (0) 10 (0) 12 (0) 0 (0) 3 (0) 0 (0) 10 (0) 
Bi(2) II (0) 9 (0) l0 (0) 0 (0) 2 (0) 2 (0) 10 (0) 
Ti(t) 6 (1) 5 (0) 9 (1) 0 (-) 0 (-) 0 (0) 7 (0) 
Ti(2) 5 (0) 5 (0) 7 (0) 0 (0) I (0) 0 (0) 6 (0) 
O(1) 6 (2) 7 (2) 14 (3) 2 (2) 3 (2) 1 (2) 9 (I) 
0(2) 9 (2) 7 (I) 5 (2) 0 (I) - 2  (2) - 1 (2) 7 (1) 
0(3) 10 (1) l0 (1) 12 (2) - 1 (2) 0 (2) I (2) 10 (1) 
0(4) 20 (2) 13 (1) 6 (2) 3 (1) - 2  (1) - 4  (1) 13 (I) 
0(5) 7 (2) 7 (1) 12 (3) 0 (1) 0 (2) 0 (1) 8 (l) 
0(6) 7 (2) 5 (1) 16 (3) 2 (I) l (2) 0 (I) 9 (1) 

the program RAELS (Rae, 1989), came from using 
the twofold symmetry implicit in B2ab to relate 
thermal parameters of  atoms related by the pseudo- 
symmetry. To fix the origin, the Bi(2) and Bi(2)' 
atoms were constrained to make their displacive 
contributions to F2mm and Fmm2 be zero. 

The final minimum obtained was thoroughly 
tested, and can be relied upon because of  the small 
thermal parameters and similarities in Ti environ- 
ments. Considerations in assessing the quality of  the 
answer were elaborated earlier. Analysis of  the 
refinement from possible false minima was also sum- 
marized. Refinement statistics for the final cycle are 
given in Table 8.* 

Description of the structure 

The decomposition of the final structure in terms of  
displacements associated with different irreducible 

* A list o f  structure factors  has  been depos i ted  with the British 
Library D o c u m e n t  Supply  Centre  as Supplementary  Publ icat ion 
N o .  S U P  5 2 7 8 6  ( 2 0  p p . ) .  C o p i e s  m a y  be obta ined  through  The  
Technica l  Editor,  Internat ional  U n i o n  o f  Crysta l lography,  5 

A b b e y  Square,  Chester  C H 1  2 H U ,  England.  

Table 8. Final refinement stat&tics for Bi4Ti3Ol2 

Notes: 

Data set Rn wR G.o . f .  
All 2839 observed data 0-0177 0.0199 1-33 
(I) 827 eee data 0.0160 0-0210 1.63 
(2) 742 ooo data 0.0151 0.0176 1-36 
(3) 618 eoe data 0.0240 0.0196 1.01 
(4) 616 oeo data 0-0229 0-0186 1.02 
(5) 5 hk0, k odd data 0.226 0.224 2.06 
(6) 31 sin0/A < 0.2 A-  ~ data 0.0311 0.0292 2.50 
(7) 189 1 > 20-(/) data 0.370 0-349 0.79 

Rt = Y b l l F o ~ ) l -  IF~,,~)ll/YblFo~(h)l. wR = [2bwu( Fo~0a)l - IF~r~(h)l)2/ 
~w~lFo~(h)l~] '-', G.o.f. = [Tuwu(IFo~(h)l - IF~tc(h)l)2/(n - m)]' 2 

representations is given in Table 9. Interatomic 
distances are given in Table 10. The structure is 
substantially different from that of  Dorrian et al. 
(1971), especially in terms of the F2mm component 
and the omitted Bbam and Fmm2 components.  It is 
reasonable to suspect that the displacive modes that 
exist in the structure of  Bia(Ti,Nb)O9 will be similar 
to those in this structure, but with the central octa- 
hedron removed and 0(3)  and 0(3)'  coalesced. We 
intend to redetermine this structure and will exten- 
sively discuss the crystal chemistry of  Aurivillius 
phases at that time. 

Fig. 2 shows the Bmab component of  the atom 
displacements. This motion can be described as a 
soft mode in which TiO6 octahedra rotate about axes 
parallel to the polar direction a with alternating signs 
for the rotation as z increases. Ignoring the centring, 
this mode has man symmetry when an odd number 
of  perovskite layers exists, n = 3 for BiaTi3OI2, but 
mam symmetry when an even number of perovskite 
layers exist, n = 2 for Bi3(Ti,Nb)Og. The imposition 
of  2lab symmetry across the Bi202 layer then gener- 
ates space groups B2ab for n = 3 and A21ab for n = 
2. 

The coexistence of  the polar F2mm displacement 
and the Bmab (or Amam for n = 2) displacement 
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Table 9. Displacements for modulation modes of Bi4Ti3Ol2 

Values are listed x l0  s A .  

F2mm Bmab Bbab F12/m I Fmm2 Bbam Bmam 
6X 6 Y 8 Y 6 Z  8X  8 Y 6X  6 Y 8 Z  ~X 6 Y 6 Y 6 Z  

Bi( l )  12 12 5 15 0 
Bi(I)" 12 - 1 2  - 5  15 0 
Bi(2) 0* - 106 - 12 0* - 6  
Bi(2)' 0* 106 12 0* - 6 
Ti ( I )  243 24 - 7 
Ti(2) 277 - 1 5 9 0 
Ti(2) '  277 1 - 5 9 0 
O(1) 419 - 17 262 71 - 152 157 
O( I ) '  419 17 - 2 6 2  71 152 157 
0 (2 )  119 10 - 3 5  3 - 2 7  - 8  
0 ( 2 ) '  119 - 10 35 3 - 27 8 
0 (3 )  499 - 349 - ! 47 - 31 
0 (3 ) '  499 349 I 47 - 31 
0 (4 )  305 277 - 4 32 38 
0 ( 4 ) '  305 - 277 4 32 38 
0 (5 )  414 - 5 6  - 199 - 178 180 16 - 8  24 - 3 4  47 - 3  
0 ( 5 ) '  414 56 199 - 178 - 180 - 16 - 8 24 34 47 - 3 
0 (6 )  414 56 199 178 180 16 8 24 34 47 3 
0 ( 6 ) '  414 - 56 - 199 178 - 180 - 16 8 24 - 3 4  47 3 

* These displacements have zero values as they were used to fix the o r i g i n  in  Bla l .  The sum of  
displacements obtained by least-squares refinement. 

the atomic displacements from each mode equals the 

Table 10. Geometry of the Ti and Bi environments in Bi4Ti3012 

Distances (/~,) 

Only distances < 3 .5  A are listed. Distances in the same row o f  the table would be equivalent in the Fmmm ~arent structure. O atoms are coded to indicate 
which special posit ion o f  Fmmm they are displaced from, namely: (i) ~, ~, z;  ( i i)  ~ i -.- J 3 - a, ,, z; (m) ~, 4, z; (iv) - ~, i J . , , .. a, z;  (v )  4, - ~, z; (Vl) - z, - a, z and ( v n )  0,  0 ,  z;  
(v i i i )  0 ,  1, z;  ( ix)  ~, ~, z;  (x )  - ~ ,  ~, z respectively. 

Angles  (o) 

Bi( l )  - - O ( 1 ' )  2.759 (9) 
-----0(3 TM) 3-141 (9) 
----0(5 ~) 2.462 (12) 

B i ( l ) ' - - -O( l ' )  3.222 (9) 
--O(3'~')  ' 2-441 (9) 
---O(6')" 3 '056 (I 1) 

Bi(2) - - O ( 2  ~) 2-289 (13) 
---4)(4 ~") 2"483 (11) 
- - -0 (6  'v) 3.164 (12) 

B i ( 2 ) ' - - O ( 2  ~) 2.449 (13) 
----O(4~") ' 3.219 (1 I) 
---O(6") ' 3.280 (12) 

Ti ( I )  - -O(1  ~) 2.067 (7) 
----4)(3 '~) 2-013 (14) 

Ti(2) - - O ( Y )  2-071 (10) 
-----0(3 TM) 2.289 (15) 
-----0(4 v") 1.788 (18) 

Ti(2)'-----O(6')' 2.017 (9) 
---O(3V") ' 2-356 (15) 
---O(4V'~) ' 1.730 (18) 

O( l ' ) - - T i ( l ) - - O ( l  ~)'  171-4 (3) 
O(5')---Ti(2)---O(6 '~) 158.2 (6) 
O(5 ' ) ' - -Ti(2) ' - - -O(6U) ' 156.9 (7) 

m O O " )  2.648 (9) ----O(1'")" 3.424 (8) -----O(l'V) ' 2.787 (9) 
---4)(3 v~u) 2.370 (9) - - -0(3  ~) 3.235 (10) ----0(3 ~) 2.285 (10) 
----4)(5 ~) 2.416 (12) ----0(6 ~) 3.183 (11) - - -0(6 ' ' )  2-271 (12) 
---O(V ~) 3.118 (9) -----O(l~U) ' 3.167 (8) ---O(1' ')" 2-451 (9) 
- -~(3v '" )  ' 3-087 (9) ---O(Yx) ' 3.246 (10) ---O(3x) ' 2.271 (10) 
- -0 (6" )"  2.334 (12) ---O(5'1') ' 2-520 (12) ----0(5'")' 2.342 (13) 
- - 0 ( 2 " )  2.174 (14) ---O(2"')" 2-457 (12) ---O(2'v) ' 2.247 (13) 
- - -0(4  v"~) 3"285 (11) -----0(4 ~) 3.188 (13) ----4)(4 x) 2.599 (14) 

---O(2 ji) 2.296 (13) - - O ( 2 " ) '  2.318 (13) - - O ( 2 ' ' )  ' 2-219 (14) 
--O(4V'") ' 2-588 (11) --O(4~x) ' 3.191 (13) - -O(4~)  ' 2.632 (14) 

----4)(1") 1.836 (7) - - -O(1 ' ) '  2.067 (6) ---O(lV') ' 1.850 (7) 
---O(3V") ' 1.959 (14) 
---O(Y ~) 1 "938 ( I 0) -----0(6") 2.025 (9) ---O(6 v~) 1.931 (9) 

- - -0(6") '  1-890 (9) - - -O(5 ' ) '  2.050 (10) ---O(5'1)" 1.961 (I 1) 

O(V ' ) - -T i ( I ) - - -O( I3"  171.6 (4) O(3V")--Ti(l)---O(3v") ' 165-1 (2) 
O(5")---Ti(2)----O(6~) ' 157.7 (6) O(3V")---Ti(2)---O(4 TM) 174-0 (5) 
O(5V')'--Ti(2)'-----O(6i) ' 156-7 (6) O(3Vu)'--Ti(2)'---O(4v") ' 173.2 (5) 

implies the possible coexistence of  a Bbab (or Abam) 
displacement. The F2mm mode is shown in Fig. 3. 
The extra mode corresponds to rotations of TiO6 
octahedra about axes parallel to c. Looking down c, 
these rotations are in the same sense for n = 2  
because of mirror symmetry, but an antimirror sym- 
metry exists for Bbab. Thus the central Ti(1)O6 octa- 
hedron in Bi4Ti3Ol2 shows no rotation in this mode. 
The rotation of the Ti(2)O6 octahedron is shown in 
Fig. 4. 

Rotation of the central Ti(1)O6 octahedron about 
c requires a mode of  Bbam symmetry. The F2mm 
and Bmab modes have the largest displacements but 
those for the Bbab and Bbam modes are almost as 

large. The angular displacements are 7.5, 0, - 7 . 5  ° 
for the Bbab mode and 1.7, 6.5, 1.7 ° for the Bbam 
mode. The resulting angles, namely 9.2, 6-5, - 5 . 8  °, 
suggest these rotations are involved with a unit-cell 
volume reduction. The residual anisotropy of ther- 
mal motions in Table 7 is consistent with extra 
low-frequency rotations of the TiO6 octahedra about 
axes perpendicular to e. 

The remaining F12/ml, Fmm2 and Bmam modes 
have smaller displacive amplitudes and would appear 
to be induced. The magnitudes of these modes and of 
the Bbam mode depend on the twin ratio and could 
be too small by up to 30%. Large errors also result 
because twinning reduced the difference between hkl 
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and hkl data. The optically observed polar Fmm2 
displacement would be induced by the symmetry 
product Bbam*Bbab which couples the rotations 
about e. The F12/ml mode would come from Bbam* 
Bmab and the Bmam mode from Bbam*F2mm. 

The implied imposition of 2~ab symmetry across 
the Bi(2)20(2)2 layer is manifested in the substantial 
F2mm and Bmab components for the O(2), Bi(2) and 
0(4) atoms. The only Bbab component for any of 
these atoms is small, -0 .035  A, and is associated 
with the y of 0(2). This supports our proposition 
that the F2mm and Bmab (or Amam) modes are the 
important ones for conveying coherence between 
slabs of perovskite separated along c. Analysis of the 
Bi-atom displacement relative to the four 0(2) atoms 
which would be equidistant for Fmmm symmetry 
shows that the Bi(2) moves preferentially towards 
one of the 0(2) atoms, shortening one bond, leaving 
the two adjacent Bi(2)---O(2) bonds unchanged and 
lengthening the other. The 2~ab symmetry gives a 
maximum separation between the shorter (also 
longer) bonds in the Bi202 layer. 

We have calculated the dipole moments using 
ionic species Bi 3+, Ti 4÷, 0 2- and obtained values of 
36-3 and 2.4 lxC cm -2 for the x and z components, 
which agrees well with the experimental results of 

/ \ 
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/ \ 
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\ / \ i I 

0151~0161 

0 1 6 1 ~  BI(I)' 
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/ / \ 
1 \ / \ \ / 

\ / 
- \ / 

Fig. 2. A section of the Fmmm parent structure projected down a. 
The superimposed arrows correspond to the Bmab component 
of the atom displacements (see Table 8). The other section per 
unit cell is displaced by (a + b)/2 and is not shown. The arrows 
are reversed for this other section. Only atoms between :le and 
are shown. The remaining atoms are related by B centring. 

Cross & Pohanka (1971). We see from Table 9 that 
all Ti and O atoms move a substantial amount in the 
x direction relative to the Bi atoms (not the case in 
the description of Dorrian et al.). However, the Ti 
atoms do not move as far as do the octahedra of O 
atoms surrounding them. The 0(2) atoms which are 
part of the Bi202 layer move less than the other O 
and Ti atoms. 

• / \ • 
/ \ 

ol27'\ /b(2)' "X J' 
/ / 

\ 

~11 

oc 1 ~ 7 1  ~ ~ d n  r 

\ /  
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Fig. 3. A section of the Fmmm parent structure projected down b. 
The superimposed arrows correspond to the F2mm component 
of the atom displacements (see Table 9). The other section per 
unit cell is displaced by (a + b)/2 and is not shown. Only atoms 

I 3 between ~ and a are shown. The remaining atoms are related by 
B centring. The F2mm component corresponds to the spon- 
taneous polarization along a. 

Ti'(2) 

~0(6) 

~.o(5) 

Fig. 4. The Bbab displacive mode showing the rotation of Ti(2)O6 
octahedra about the c axis. The Ti(2)'O6 octahedra have an 
equal but opposite rotation. Ti(l)O6 octahedra have no Bbab 
component. 



A. D. RAE, J. G. THOMPSON,  R. L. WITHERS A N D  A. C. WILLIS 487 

It is seen that a first-order description of the 
structure includes an F2mm displacement of the TiO6 
octahedra relative to the remaining atoms rather 
than a movement of Ti atoms relative to their sur- 
rounding O atoms. This produces a larger dipole 
moment than is the case for many other Aurivillius 
phases and is probably induced by the lone pair of 
electrons on each Bi 3÷ ion. The structure shows a 
substantial spread in Bi--O distances that would 
have been equal for zero displacements from the 
Fmmm parent structure. Distances are given in Table 
10. The Ti - -O distances are more equal but the Ti 
atoms do not lie at the centres of mass of their 
surrounding O octahedra. Deviations of O - - T i - - O  
angles from 180 ° for opposed O atoms are included 
in Table 10. The large z displacement components of 
Ti(2) and Ti(2)' are such as to increase their distance 
from Ti(1 ). 

In the parent structure each Bi atom is at 0,~-,z and 
is surrounded by O atoms at about the same z height 
at (vii) 0,0,z; (viii) 0,1,z; (ix) :,~,z; TM (x) -~,~,z~ at 
distances of about 2.7 A. It is seen that the Fmm2 
mode (Fig. 3) reduces the Bi--O x distances at the 
expense of Bi---O ix distances and that the Bmab 
mode (Fig. 2) shortens one and lengthens the other 
of the pairs of Bi---O vii and Bi---O vi" distances in an 
alternating pattern for the sequence Bi(2)', Bi(1)', 
Bi(1), Bi(2). The Bi(2) and Bi(2)' atoms have a 
0-106/~ Bmab displacement that assists the bond- 
length reduction of the shorter bond. The Bbam 
rotations of the Ti(1)O6 octahedron cause the Bi(1) 
and Bi(1)' environments to be quite different. This is 
highlighted in the first four distances tabulated for 
each atom. All Bi environments are highly asym- 
metric as is expected since each Bi 3+ ion has a lone 
pair of electrons. 

The authors wish to thank Dr J. D. FitzGerald for 
assistance with optical microscopy and Dr N. W. 
Alcock for assistance with crystal measurement. 
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Structure of the Incommensurate Composite Crystal (PbS)~.~2VS2 
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Abstract 

The structure of the incommensurate composite crys- 
tal of the monoclinic layered sulfide (PbS)I.12VS2, Mr 
= 384.20, has been analyzed on the basis of a four- 

0108-7681/90/040487-06503.00 

dimensional superspace group. The crystal is com- 
posed of alternately stacked two-atom-thick PbS 
layers with a distorted NaCl-type structure, and VS2 
sandwiches with a distorted CdI2-type structure. For 
1780 unique reflections measured by single-crystal 
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